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Abstract Recently, some studies have started to show how global structural
properties or dynamical processes such as synchronization, robustness, cooperation,
transport or epidemic spreading change dramatically when considering a network
of networks, as opposed to networks in isolation. In this chapter we examine the
effects that the particular way in which networks get connected exerts on each
of the individual networks. We describe how choosing the adequate connector
links between networks may promote or hinder different structural and dynamical
properties of a particular network. We show that different connecting strategies
have consequences on the distribution of network centrality, population dynamics
or spreading processes. The importance of designing adequate connection strategies
is illustrated with examples of social and biological systems. Finally, we discuss
how this new approach can be translated to other dynamical processes, such as
synchronization in an ensemble of networks.
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4.1 Introduction

During more than a decade, the application of Complex Networks Theory to
real systems has given fruitful results in the understanding of how networked
systems organize, interact and evolve [1–4]. Initially, the main motivation was to
characterize the topology of real systems (randomness, heterogeneity, modularity,
etc.) and its connection with structural problems such as resilience, robustness or
navigability [5–9]. Then, attention was devoted to how dynamical processes such as
synchronization [10, 11], spreading [12–15] or congestion [16–18] were constrained
by the network structure [19]. In a further development, the interplay between
structure and dynamics was interpreted as a closed loop, wherein the structural
properties of networks could be understood as a consequence of an adaptative
process influenced by the dynamics and vice versa [20].

More recently, the idea that a network is, in many real cases, a network of
networks (NoN), has emerged [21, 22]. In many cases, component networks of
a NoN can be interpreted as modules of a unique modular network. While the
detection and analysis of modules inside a network has been deeply studied [23, 24],
the influence of intranetwork structures on dynamical processes remains largely
unexplored. For instance, as shown in Ref. [21], interconnections between networks
may play a crucial role in processes such as percolation, eventually leading to
dramatic first order transitions. Other example is epidemic spreading, where it was
shown that the creation of links between the most central nodes of two communities
can enhance the propagation of a disease through the whole network [25].

In this chapter we focus on the competition taking place when two initially
separated networks are coupled with one or more connector links to form a unique
ensemble network. In particular, we examine how one or both networks can be better
off according to some criterion depending on the connecting strategy that is adopted.
To determine which network is benefitting the most from the interaction, we make
use of the eigenvector centrality [4]. The eigenvector centrality is a measure of
node importance that is obtained by calculating the eigenvector associated to the
largest eigenvalue of the connectivity matrix, which, as we will see, depends on the
dynamical process occurring in the network. Next, the centrality captured by each
competing network is obtained as the sum of the centrality of all its nodes. The
whole problem can then be framed as a competition for limited resources, since an
increase of centrality for one network necessarily entails a corresponding decrease
in that of its competitors.

The advantage of such a way of analyzing network competition is that, in addition
of being a measure of node importance, the eigenvector centrality is related to
a series of dynamical processes, such as disease spreading, diffusion processes,
evolution of genotypes, rumor and opinion formation (see Ref. [4] for a review).
In these cases, the transient or final state of the system depends directly on the
eigenvector u1 associated to the largest eigenvalue �1 of the connectivity matrix.
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We will describe how the eigenvector u1 of two isolated networks is modified
when certain connections between them are created, leading to an interconnected
network [21, 22].

In the remainder of this chapter we first analyze how the eigenvector u1 of a NoN
can be obtained from the spectral properties of the networks forming the ensemble.
We then identify the optimal strategies that a network can follow when connecting
to other networks and apply this methodology to population dynamics and epidemic
spreading. We finally discuss the main concepts introduced in this chapter and point
to possible problems to be tackled in the future.

4.2 The Influence of Interconnectivity on the Spectral
Properties of an Interconnected Network

In this section we give analytical expressions for the spectral properties associated
to a generic connectivity matrix M, resulting from the connection of two initially
isolated networks A and B [26]. The connectivity matrix is a weighted version of
the classical adjacency matrix A, where the component Mij measures the strength of
the connection between nodes i and j (and Mij D 0 if i and j are not connected to
each other). The aim is to gain a priori knowledge of the main spectral properties
of the interconnected network by inspecting the structure of A and B, and the
link(s) connecting both networks. Specifically, we are interested in: (i) the highest
eigenvalue of the connectivity matrix and (ii) its associated eigenvector.

Figure 4.1 schematically represents two independent networks A and B, of NA

and NB nodes and LA and LB links respectively, which initially form the disconnected
network AB of NA C NB nodes and LA C LB links. Next, we connect both networks
via a set fclglD1;:::;L of L connector links to create a total interconnected network
T of NT D NA C NB nodes and LT D LA C LB C L links. The adjacency matrix
GT corresponding to network T is therefore formed by adding to the block diagonal
network containing the original adjacency matrices of A and B, GAB, the connector
links. For simplicity, let us suppose that GT is symmetric, that is, the links of
network T are bidirectional (this is tantamount to considering the initially isolated
networks A and B to be symmetric and establishing interconnecting links that are
bidirectional). Depending on the topological importance of the nodes that act as
connectors between networks, four different strategies in the election of a connector
link can be adopted: (a) peripheral-peripheral (PP), (b) peripheral-central (PC), (c)
central-central (CC) and (d) central-peripheral (CP). Let us call �A;i and �B;i the i
eigenvalues of the connectivity matrices MA and MB respectively, where i goes from
1 to the size of the corresponding network (NA or NB) with i D 1 corresponding
to the largest eigenvalue and the rest following in decreasing order. The relation
between connectivity matrices such as MA, MB and MT and the adjacency matrices
such as GA, GB and GT depends on the peculiarities of the process. Let us suppose
�A;1 > �B;1 throughout the chapter, being the strong network the one with highest
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Fig. 4.1 Schematic representation of the different strategies for connecting two networks, accord-
ing to the centrality of the connector nodes. The strong network is defined as the network with
higher �1 (first eigenvector of the connectivity matrix M). Central nodes C are those with the
highest eigenvector centrality, obtained from u1 (eigenvector associated to �1), while peripheral
nodes P have the lowest centrality. Initially, the networks remain disconnected and, next, we
connect them by adding connector links. According to the centrality of the connector nodes, four
different strategies can be followed: (a) peripheral-peripheral (PP), (b) peripheral-central (PC),
(c) central-central (CC) and (d) central-peripheral (CP)

�1 and the weak network the one with the lowest. This way, from now on, network
A (B) will be the strong (weak) network.

We call uA;i the NA vectors of length NT where the first NA elements coincide with
the eigenvector i of matrix MA and the rest are equal to zero, while uB;i are the NB

vectors of length NT where the first NA elements are zeros and the rest coincide with
the eigenvector i of matrix MB. �T;i and uT;i are the eigenvalues and eigenvectors
of matrix MT. The main idea of the analytical calculations is to describe the total
graph T as a perturbation of graph A by graph B, in a way that the weight of the
connector links is � � 1. Therefore, as �A;1 > �B;1 by construction, the maximum
eigenvalue �T;1 will be a perturbation of �A;1 and its associated eigenvector uT;1

will be a perturbation of uA;1. This methodology is inspired by the perturbation
theory of matrices presented in [27], and among some other examples it was recently
applied in the context of Complex Network Theory to characterize the importance
of network nodes and links [28], and for the detection of communities [29]. We give
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a fully detailed calculation in the Appendix, which ends up with

uT;1 D uA;1 C �

NBX

kD1

akuB;k C o.�2/ ; (4.1)

where ak D .uA;1PuB;k/=.�A;1 � �B;k/, and P is a matrix representing the connector
links in such a way that MT D MAB C �P. Note that, since uA;1PuB;1 DP

.uA;1/iPij.uB;1/j , only the connector nodes (i.e., those connected by Pij) will
contribute to this latter term. See [26] for more details and its application to the
case of directed networks (i.e., asymmetric networks, with unidirectional links) and
more than two networks.

4.3 Identifying Successful Strategies

The eigenvector uT;1 can be used to determine the outcome of a competition between
networks A and B. In this section, we focus on how two networks compete for
acquiring the maximum importance inside the interconnected network, while in
the next sections we will discuss how to apply these concepts to other dynamical
processes. The eigenvector centrality, which is given directly by the eigenvector
uT;1 is used as a measure of the topological importance of a node. Subsequently, the
centralities of networks A (CA) and B (CB) are obtained from the fractions of the
total centrality that remain in the nodes of A and B after the connection:

CA D
PNA

iD1 .uT;1/i
PNT

iD1 .uT;1/i
; (4.2)

CB D 1 � CA : (4.3)

Suppose that a networks’s goal is to accumulate as much C as possible.
Regarding Eqs. (4.1) and (4.2), and taking into account that a1 > akC1, with k � 1

(since eigenvalues are ranked according to their value), the final outcome of the
competition depends mainly on a1: uT;1 ! uA;1 when a1 ! 0 and therefore,
CA ! 1, since the elements of uA;1 are zero for all nodes belonging to network
B (see Appendix for details). Otherwise, CB will grow when a1 grows.

But, how does a1 depend on networks A and B, and on the connector links?
Inspecting the expression of a1 (i.e., a1 D ŒuA;1PuB;1�=Œ�A;1 � �B;1�) we can observe
that it relies on two main factors: (i) the difference between the highest eigenvalues
associated to both networks, �A;1 and �B;1, and (ii) uA;1PuB;1, a quantity that is
proportional to the centralities of the connector nodes when the networks are still
disconnected, and to the number of connector links. Importantly, these two factors
will control the distribution of centrality between the two competing networks.
While (i) is independent of the connection strategy, (ii) depends crucially on the
nodes that are chosen to establish connections between A and B.
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This way, when the connector nodes are the most central (i.e., uA;1PuB;1 is
maximum), network B (the weakest) shows its best results in centrality. On the
contrary, when the connector links join peripheral nodes of both networks, the value
of a1 reaches its minimum. Consequently, when a1 ! 0, most centrality distributes
over network A and therefore uT;1 ! uA;1, leading to CA ! 1. Finally, the larger
the number of connector nodes, the higher the term uA;1PuB;1, leading to an increase
of a1 and, as a consequence, to a decrease of CA, indicating that the strong network
does not benefit from multiple connections.

It is remarkable that the expression of uT;1 can be approximated, up to first order,
to a linear combination of uA;1 and uB;1 (terms k > 1 in Eq. (4.1) are less relevant
and mainly affect the connector nodes). In spite of the fact that the percentage of
centrality captured by both networks is altered by introducing connector links, the
distribution of centrality inside each network after the connection is therefore to
some extent proportional to what it was before.

In summary, these results allow developing a general set of strategies that
competitors A and B (with �A;1 > �B;1) should follow in order to obtain as much
centrality as possible after the connection. Recalling that the strong network is the
one with the largest first eigenvalue, and the weak network the one with the smallest,
the general rules to maximize the outcome of a network that competes for centrality
tell us that:

• Connecting the most central nodes of two networks optimizes the centrality
of the weak network.

• Connecting the most peripheral nodes of two networks optimizes the
centrality of the strong network.

• Increasing the number of links reinforces the centrality of the weak
network.

From all above, we stress that the goal of each competitor is not really to
overcome the adversary, but to obtain the optimum outcome measured with the
eigenvector associated to the largest eigenvalue of the interconnected network.
Importantly, the strategy played by each network depends on whether its largest
eigenvalue is higher or lower than its competitor, i.e., strong and weak networks
must play different strategies to maximize its outcome.

4.4 Applications

As we have seen, the selection of connector nodes between networks strongly
influences the eigenvector uT;1 of the interconnected network and how its elements
are distributed between the two networks forming it. Since the eigenvector centrality
of the nodes is given by the eigenvector uT;1, the competition for uT;1 between two
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networks can be interpreted as a struggle for acquiring the highest possible centrality
for the nodes inside a network. Interestingly, uT;1 may also contain information
about the dynamical processes undergoing inside the network. In this section, we
will show two particular examples in population dynamics and disease spreading.
We will see how the previous strategies can be interpreted as a way of maximizing
the outcome of a dynamical process and that this can be done by just looking at uT;1.

Population Dynamics

A variety of dynamical processes occurring on a network can be mathematically
described as

n.t C 1/ D M n.t/ ; (4.4)

where n.t/ is a vector whose components give the state of each node at time t (for
example, the population of individuals at each node), and M, with Mij � 0, is a
connectivity matrix that contains the peculiarities of the dynamical process (usually
named as “transition matrix” in this context).

M is a primitive matrix. For this reason, its largest eigenvalue is positive, it
verifies that �1 > j�ij, 8 i > 1, and its associated eigenvector is also positive
(i.e., all its elements are positive). After t steps, the state of the system is given by

n.t/ D Mtn.0/ D
mX

iD1

.n.0/ � ui/�
t
iui ; (4.5)

where n.0/ is the initial condition, ui the i�th eigenvectors of M, and m the size of
the network. As we consider M to be a real symmetric matrix, ui for i D 1; 2; : : : ; m
can be conveniently chosen so as to form an orthonormal basis that permits the
spectral decomposition above.

From Eq. (4.5) we obtain that the system evolves towards an asymptotic state
independent of the initial condition and proportional to the first eigenvector u1,

lim
t!1

�
n.t/

.n.0/ � u1/�t
1

�
D u1 ; (4.6)

while its associated eigenvalue �1 yields the growth rate at the asymptotic equilib-
rium. If n.t/ is normalized such that jn.t/j D 1 after each iteration, n.t/ ! u1 when
t ! 1. Therefore, there is a correspondence between the eigenvector centrality and
the asymptotic state of the system at equilibrium: both quantities are proportional to
the eigenvector u1 associated to the largest eigenvalue of the transition matrix M.

Let us discuss one specific example showing the evolution of a population
of genomes (e.g. RNA sequences) that duplicates and mutates inside a genotype
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network, where each node represents a different sequence. Two nodes are linked if
they differ in only one nucleotide, and therefore one sequence can evolve from one
node to the other via point mutations. At each node i of the network, we consider
a certain population ni. At each time step: (i) the population ni replicates with a
growing rate R > 1, (ii) its daughter individuals leave the node with probability
�, being 0 < � � 1, and (iii) the parameter S controls how probable it is for
an individual to remain alive after leaving a node (see Fig. 4.2a for a qualitative
description of the process). The transition matrix describing the evolution of the

Fig. 4.2 Evolutionary dynamics of a population of genomes. (a) Schematic representation of
the evolution of the vector state of the system n.t/ when the population spreads on a single
network of genomes. The population evolves through a duplication+mutation process, each node
sending/receiving population from its neighbors when mutation occurs. (b) The evolution of the
average degree hKi of the population shows that the final distribution is independent from the
initial conditions, and higher that the average node degree NK. Three different initial distributions
are considered: (I) the whole population placed at the most central node (“hub”), (II) uniformly
distributed over the network, and (III) placed at the most peripheral node. (c) and (d) Evolution
of the population when two networks are connected through the most central nodes (CC) and two
peripheral nodes (PP) respectively. While in the CC configuration the weak network is able to
retain 14.6 % of the population, in the PP case the population is almost completely absorbed by the
strong network and only 10�4 % stays in the weak one. The parameter values are �A;1 D 1:9135,
�B;1 D 1:9109, R D 2, � D 0:1, and S D 36 (Note that the networks used are artificial examples
that verify the basic topological properties of genotype networks but do not represent real cases;
see [30, 33] for more details)
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system is given by [30]:

M D .R � �/I C �

S
G ; (4.7)

where G is the adjacency matrix (i.e., Gij D 1 if nodes i and j are connected and zero
otherwise) and I is the identity matrix (i.e., Iij D 1 if i D j and zero otherwise).

Within this framework, the eigenvector u1 of the matrix M yields the final
distribution of the population at the stationary state. As expected from the reasoning
above, the final distribution does not depend on the initial conditions as illustrated
in Fig. 4.2b, where the population is initially distributed in three different ways.
Furthermore, the average degree of the stationary population hKi is given by the
largest eigenvalue �1, which fulfills that �1 � NK, being NK the average degree
(number of connections) of the nodes in the network [31].

Now, let us analyze the evolution of the population when two (sub)networks are
joined through a connector link. This situation could resemble, for example, the
evolution on one very modular RNA neutral network (in [32] the high modularity
of such networks was recently analyzed), or two different RNA neutral networks
connected via a unique link, representing each neutral network A and B the total
set of sequences that fold in two different secondary structures [33]. In Fig. 4.2c, d
we observe that the election of the adequate link between those two networks has
critical consequences on the population accumulated at each network. Following
the rules explained in the previous section, the weak network benefits from the CC
connection, acquiring 14.6 % of the total population (CB D 0:146). This is the best
outcome that the weak network would be able to achieve when connecting through
one link. On the contrary, when the PP strategy is followed, the strong network
absorbs the majority of the population and the weak network remains virtually
empty (CB D 10�6) .

Spreading Processes: The SI Model

The highly developed mathematical modeling and statistical physics analysis of
spreading processes have successfully described the existence of, for example,
fixed points, phase transitions or spreading thresholds [34]. Among the different
examples of spreading, such as rumor spreading or packet transmission through the
WWW, disease spreading has been studied the most [35]. The prediction of disease
evolution and the dynamics of contagions have been analyzed with a diversity
of models which combine both the state of the system at different scales (from
the individual to the whole population) and the structure of connections between
individuals [34]. In this section our focus will be on how the structure of the network
of contacts between individuals affects the probability of individuals being infected
by a disease. Several works have investigated how the network topology constrains
the epidemic dynamics and, more specifically, the outbreak of a disease and the
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properties of the epidemics in equilibrium [12, 13]. Nevertheless, less attention
has been paid to the fact that social networks are typically organized in modules
(or subnetworks), which interact between them through certain connector links.
What is the effect of the connector links on the spreading of a disease through
different subnetworks? As we are going to see, the concepts and tools defined in the
previous sections will help us to understand this issue. With this aim, we are going
to implement a specific disease model, the Susceptible-Infected (SI) model [36],
over two networks that interact by creating interlinks as it is explained in Fig. 4.1.
But first of all let us describe in detail the model and its implementation on a single
network.

The SI model distinguishes two different states of the individuals: Susceptible
(S) of acquiring the disease and Infected (I). When a susceptible individual (i.e., a
person prone to be infected) meets an infected one, it will acquire the disease with
a certain probability, which is controlled by the spreading rate ˇ:

S C I
ˇ! 2I; (4.8)

Next, we construct a network where the nodes are individuals and the links
account for interactions between them. The connectivity matrix M of the network
contains the connections between individuals (i.e., Mij D 1 if two individuals
are connected, and zero otherwise). The probability that a node (i.e., a person) k
becomes infected is given by Ik.t/, while Sk.t/ D 1 � Ik.t/ is the probability of
it being susceptible (i.e., not infected). The network structure strongly influences
the probability that node k becomes infected between times t and t C dt, as it is
proportional to the number of neighbors that are already infected ˇ

P
j MkjIj. Since

only susceptible individuals can get infected, the dynamics of Sk.t/ and Ik.t/ can
be described by a set of N differential equations, N being the total number of
individuals:

dSk

dt
D �ˇSk

X

j

MkjIj D �ˇSk

X

j

Mkj.1 � Sj/; (4.9)

dIk

dt
D ˇSk

X

j

MkjIj D ˇ.1 � Ik/
X

j

MkjIj; (4.10)

with Sk C Ik D 1. If the disease starts from a small number of nodes, in the limit of
large system size N and ignoring quadratic terms, Eq. (4.10) becomes:

dIk

dt
D ˇ

X

j

MkjIj; (4.11)
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which in matrix form reads

dI
dt

D ˇMI; (4.12)

I being a vector of components Ik. The temporal evolution of I can be expressed as
a linear combination of the eigenvectors uk of the connectivity matrix M:

I.t/ D
NX

kD1

ak.t/uk; (4.13)

where uk is the eigenvector associated with the eigenvalue �k of M. Then

dI.t/
dt

D
NX

kD1

dak.t/

dt
uk D ˇM

NX

kD1

ak.t/uk D ˇ

NX

kD1

�kak.t/uk: (4.14)

Comparing the terms that multiply uk, we obtain:

dak

dt
D ˇ�kak; (4.15)

which has the solution

ak.t/ D ak.0/eˇ�kt: (4.16)

If we substitute Eq. (4.16) into Eq. (4.13) we obtain the following expression for
I.t/:

I.t/ D
NX

kD1

ak.0/eˇ�ktuk: (4.17)

Since the largest eigenvalue �1 dominates over the others, we can approximate the
infected population as

I.t/ � eˇ�k tu1: (4.18)

Thus, for t ! 1 the exponential term leads to I ! 1, i.e. the whole population
gets infected at the final state. Nevertheless, for low to intermediate time scales
(t � 1), it is u1, i.e. precisely the eigenvector centrality of the nodes, that controls
the distribution of probabilities of getting infected.

As explained in Sect. 4.2, the properties of the eigenvector uT;1 when two
networks A and B are connected depend on the kind of interlink. If we consider
two networks of individuals and want to understand how the distribution of the
probability of being infected depends on the kind of connection between the two
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Fig. 4.3 Probability of being infected by a disease (SI model), at the beginning of the spreading
process, for two interconnected networks. Two social networks based on romantic connections
between young students [37] are connected through a (a) CC and (b) PP connection. Node size
is proportional to the probability of being infected (obtained from uT;1) and bars indicate the
percentage of infection risk accumulated by each network. The PP strategy leads the strong network
to increase its risk of infection as compared to the weak network

networks, all strategies defined in Sect. 4.3 apply. The only difference is that, since
the terms CA and CB are related to the probability of being infected at low to
moderate times after the beginning of the epidemics, the aim of the networks will
be to reduce this probability instead of increasing it. Therefore, the strategies are
exactly the same as in the case of network centrality or population dynamics, but
they must be applied in the opposite way.

In Fig. 4.3 we show an example of how spreading processes on interconnected
networks are strongly dependent on the way the networks are linked between them.
We consider two social networks based on the romantic relationships between
students in an American high school [37]. Specifically, we select two subnetworks
that are isolated and evaluate how a connection between one student of each
subnetwork affects the probability of being infected by a disease throughout the
network ensemble. With this aim, we introduce a SI spreading process with an
infection rate ˇ D 0:1 in the networks and calculate the fraction of the first
eigenvector that lies within each subnetwork for a CC and a PP connection. In



4 Interconnecting Networks: The Role of Connector Links 73

this particular example, the largest eigenvalues of the strong and the weak network
are, respectively, �A;1 D 2:69 and �B;1 D 2:39. Figure 4.3a, b shows how the
probability of being infected at short to moderate times is always higher in the strong
network. Nevertheless, when the two most peripheral nodes of both networks are
connected (Fig. 4.3b) the probability that the strong network gets infected increases
dramatically. This is a situation that the strong network has to avoid, since it gets
much more vulnerable to the disease than the weak network. Therefore, the PP (CC)
connection is now the most harmful strategy for the strong (weak) network, while
the CC (PP) connection is the safest one.

4.5 Conclusions

In this chapter we have shown that the way networks interact to form interconnected
networks and, more specifically, how they choose the connector links, can have
important consequences on the structural and dynamical properties of the networks
[26]. A series of dynamical processes occurring on interacting networks, such as
population dynamics or disease spreading, can be explained from the analysis of
the spectral properties of the transition matrix, which in its turn depends on the
way the networks are coupled. We have seen that it is possible to define strategies
that maximize the outcome (defined in terms of the dynamical process under
consideration) acquired by a certain network. As a general strategy, strong networks
(i.e. those with the highest largest eigenvalue) will benefit from establishing
connections between peripheral nodes. Weak networks, instead, obtain a higher
benefit when the central nodes of both networks are elected as connectors.

Throughout this chapter we considered that the network’s goal is to accumulate
as much percentage of u1 as possible. However, in some cases, networks may want
to minimize it as in the case of disease spreading.

It is important to stress that the proposed methodology applies for processes
where the final state of the system is given by the eigenvector associated to the
largest eigenvalue of the transition matrix. For example, this is not the case for
diffusion processes where the system dynamics is described by the (weighted)
Laplacian matrix L, obtained as L D W � M, where W is a diagonal matrix with
Wii containing the total weight of node i [38].

The spectral properties of the Laplacian matrix also determine the stability
of the synchronization manifold in the complete synchronization of networked
systems [39]. Nevertheless, the influence of the connection strategies in the spectral
properties of the Laplacian are much more difficult to interpret than in the case of
the transition matrix, as there is no straightforward relation between the spectral
properties of both matrices. The reader is referred to Ref. [40] for a detailed
theoretical, numerical and experimental study of the effect of different connection
strategies on the synchronization of an ensemble of networks.

Finally, there are other dynamical aspects that may not be explained by the
analysis of either the transition or the Laplacian matrix. For example, it is expected
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that the complexity of the global dynamics in networks of dynamical systems that
are coupled through different connection strategies will be affected by the strategy
adopted in creating connections, but it is not clear at this point whether this may be
related to the spectral properties of any matrix representing the coupling topology of
the system. These and other problems related to networks of networks are still open
and will have to be addressed in the future, showing that network interconnection is a
promising subfield of network theory with potential applications in several branches
of science.
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Appendix

Networks A and B, of NA and NB nodes and LA and LB links respectively, form
the initially disconnected network AB of NA C NB nodes and LA C LB links. We
connect them through L connector links to create a new interconnected network T
of NT D NA C NB nodes and LT D LA C LB C L links. For convenience, the nodes
of network A are numbered from i D 1 to NA and the nodes of network B from
i D NA C 1 to NT D NA C NB. The adjacency matrix GAB of the disconnected
network consists of two diagonal blocks corresponding to GA and GB. The relation
between the transition matrix MAB, also formed by two blocks, and GAB, depends
on the peculiarities of the process. Note that the eigenvectors of MA and MB are
related to those of MAB as follows: Let us call xA;i (i D 1; : : : ; NA) and xB;j (j D
1; : : : ; NB) the eigenvectors associated to the eigenvalues �A;i and �B;j of matrices
MA and MB respectively. Note that the NA eigenvectors xA;i are of length NA, the NB

eigenvectors xB;j are of length NB, and the eigenvectors of MAB are of length NT .
The first i D 1; : : : ; NA eigenvectors of MAB verify .uAB;i/k D .xA;i/k for k � NA and
.uAB;i/k D 0 for k > NA. Therefore, �AB;i D �A;i for i D 1; : : : ; NA. The eigenvectors
i D NA C1; : : : ; NT of MAB verify .uAB;i/k D 0 for k � NA and .uAB;i/k D .xB;i/k�NA

for k > NA. Therefore, �AB;i D �B;i�NA for i D NA C1; : : : ; NT . For simplicity in the
following calculations, due to their evident relation with the eigenvectors of MA, we
denote eigenvectors uAB;i for i D 1; : : : ; NA as uA;i. Analogously, we denote uAB;iCNA

for i D 1; : : : ; NB as uB;i.
Considering the addition of interlinks as represented by the symmetric matrix

P (with non-zero entries in the off-diagonal blocks of elements .i; j/ with i � NA

and j > NA and i > NA and j � NA) to be a small perturbation of parameter �,
and Taylor-expanding the largest eigenvalue of MT and its associated eigenvector
around those of MAB, we obtain

MTuT;1 D �T;1uT;1 (4.19)
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where

MT D MAB C �P; (4.20)

uT1 D uA;1 C �v1 C �2v2 C o.�3/; (4.21)

�T;1 D �A;1 C �t1 C �2t2 C o.�3/: (4.22)

Taking into account that (i) juT;1j D 1 ) uA;1 � v1 D 0 and uA;1 � v2 D 0,
and (ii) uA;1PuA;1 D 0 because .uA;1/i D 0 for i > NA, we include Eqs. (4.20–
4.22) in Eq. (4.19), premultiply by uA;1 and equate the terms of the same order in �.
Considering that point (i) above, in its turn, implies that v1 and v2 can be expressed
as linear combinations of the other eigenvectors of MT , which are orthogonal to uA;1,
and therefore uA;1 � MABv1 D 0 and uA;1 � MABv2 D 0, we obtain to first order in �

uA;1 � .MABv1 C PuA;1/ D uA;1 � .�A;1v1 C t1uA;1/ (4.23)

) t1 D 0 (4.24)

) .MAB � �A;1/v1 D �PuA;1 ; (4.25)

and for order �2

uA;1 � .MABv2 C Pv1/ D uA;1 � .�A;1v2 C t2uA;1/ ) t2 D uA;1Pv1: (4.26)

The vector v1 can be numerically obtained solving Eq. (4.25). However, it can
also be analytically expressed as

v1 D
NTX

kD1

ckuAB;k D
NAX

kD1

ckuA;k C
NTX

kDNAC1

ckuB;k�NA : (4.27)

We know c1 D 0 because uA;1 � v1 D 0. Including Eq. (4.27) in Eq. (4.25), and
multiplying both sides by uAB;k from the left, we obtain ck D 0 for 1 < k � NA

(because uA;kPuA;1 D 0 8k) and ck D uA;1PuB;k�NA
�A;1��B;k�NA

for k > NA. All this yields

v1 D
NBX

kD1

uA;1PuB;k

�A;1 � �B;k
uB;k ; (4.28)

and including Eqs. (4.28) and (4.26) in Eq. (4.22), we finally obtain

uT;1 D uA;1 C �

NBX

kD1

uA;1PuB;k

�A;1 � �B;k
uB;k C o.�2/ ; (4.29)
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