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We numerically investigate the dynamics of a closed chain of unidirectionally coupled oscillators in
a regime of homoclinic chaos. The emerging synchronization regimes show analogies with the
experimental behavior of a single chaotic laser subjected to a delayed feedback. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1628431#

A peculiar chaotic dynamics consisting of a train of al-
most identical spikes separated by erratic interspike in-
tervals „ISI … results from the homoclinic return to a
saddle focus„HCÄhomoclinic chaos…. HC has been stud-
ied with reference to a CO2 laser with feedback,1 but its
occurrence is rather general, from chemical systems2 to
biological neurons.3 Recently, HC has been shown to be
susceptible of delayed self-synchronization „DSS…,
whereby a chaotic subset of spikes confined within a de-
lay time Td is reapplied as a feedback to its own genera-
tor, yielding a perpetual repetition of that chaotic subset.4

Modeling DSS implies adding delayed feedback terms to
the standard equations of HC „Ref. 5… and hence the
problem becomes high-dimensional and the correspond-
ing solution is rather lengthy.6 Here we show that, cou-
pling unidirectionally without delay N HC sites, the in-
trinsic delay t between the spike of an active site and the
triggered spike on the next site yields an overall delay
TdÄNt, provided the last site is coupled to the first one.
Thus a ring of unidirectionally coupled HC systems is
dynamically equivalent to a system with delayed feed-
back.

Collective phenomena in chains of chaotic oscillators
have recently attracted a wide interest, for the variety of
possible scenarios that can be found, and the analogies with
biological systems. Experiments have been performed on ar-
rays of optical systems,7 electronic circuits,8 neurons,9,10 and
chemical oscillators,11 reporting different synchronization
patterns, such as antiphase synchronization, and clustering.12

In a theoretical work, the dynamics of a unidirectionally
coupled ring of chaotic systems has been explored in view of
possible applications to neural systems.13 However, the need
for accurate setting of control parameters has up to now lim-

ited experiments to a small number of oscillators, hence most
works on large chains are only numerical.14 On the other
hand, an analogy between spatially extended systems and
delayed systems has already been drawn.15

For convenience we report a stretch of the experimental
time signal of the homoclinic intensity@Fig. 1~a!# as well as
its 2D phase space projection@Fig. 1~b!# obtained by an em-
bedding technique and representing a superposition of a long
sequence of spikes. The data of Fig. 1 correspond to the
output intensity of a CO2 laser with feedback. Precisely, the
output intensity is detected, coded as an amplitude voltage
plus a dc bias, and applied to drive an intracavity loss
modulator.16 For suitable ranges of the two control param-
eters~gain and bias of the feedback amplifier! a homoclinic
chaotic behavior occurs, as represented in Fig. 1.1

We realize that on each cycle the intensity returns to its
zero value baseline of Fig. 1~a! and point O in Fig. 1~b!
which represents a saddle node~SN! fixed point, then emerg-
ing with a large spike followed by a decaying spiral toward a
saddle focus~SF!. The escape from SF is represented by a
growing oscillation, which appears as a chaotic tangle in Fig.
1~b!. Notice that the chaotic region around the SF is very
contracted in phase space but stretched timewise, vice versa
the spike occurring when leaving SN takes a short time but is
spread over a wide space region.

The chaotic characteristic of the interspike interval~ISI!
is due to the chaotic permanence timets around the saddle
focus SF,17 whereas the permanence timet0 on the baseline
is a fixed refractory time corresponding to the heteroclinic
connection to SN; it stabilizes the orbit away from the saddle
focus. This is confirmed by the values of the local Lyapunov
exponents in the two regions.18 The virtue of this heteroclinic
orbit between SF and SN, that for simplicity we have called
homoclinic chaos~HC!,16 is that introducing in the laser in-
tensity channel@Fig. 1~a!# a threshold which cuts off the
chaotic background, the relevant information is contained in
the time occurrence of the geometrical identical spikes,a!Electronic mail: ileyva@ino.it
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which can be assimilated to Dirac delta functions of areaS0.
In this representation, the useful signal isS(t)5S0S id(t
2t i), wheret i is the time of occurrence of thei th spike, and
(ISI) i5t i2t i 21 .

In these conditions, a delayed feedback can stabilize
complex periodic orbits of periodT. These orbits consist of
a pseudochaotic train of pulses, that is, of a limited sequence
with chaotic ISIs, that repeats after a timeT again for ever.
Of courseT is chosen much larger than^ISI&, where^ISI& is
the ISI averaged over a long sequence.

We have called such a behavior as delayed self-
synchronization~DSS! insofar as a chaotic sequence lasting
for a time Td , once reapplied as a feedback signal to the
system, reproduces that sequence forever. This was demon-
strated by the periodic occurrence of revival peaks in the
autocorrelation function of the output intensity.4

This ability of DSS can be of interest in relation to re-
cent studies on neuronal transformation mechanisms of
short-term memories into permanent~long term! memories
via the so-called synaptic reentry reinforcement.19 Therefore,
the possibility to describe DSS as a synchronized state in a
closed chain of oscillators is a relevant issue.

First it is important to establish under what conditions a
chain of coupled oscillators is equivalent to a delayed sys-
tem. Since the delay implies that the information propagates
in one direction, just unidirectional coupling will be consid-
ered in the oscillator chain, so that the oscillator at the sitei
is driven by the previous one at the sitei 21. In addition, the
delayed re-entry of the signal in the system means that the
system is exposed to the total information generated over a
previous time stretch of sizeTd . Meeting this condition im-
poses a closed boundary with the last oscillator coupled to
the first one.

With these boundary and coupling constraints, we build
the array by using the scaled equations that model the ex-
perimental laser system,5

ẋ1
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where the indexi denotes thei th site position, and for each
oscillatorx1 represents the laser intensity,x2 the population
inversion between the two resonant levels,x6 the feedback
voltage which controls the cavity losses, whilex3 ,x4 , andx5

account for molecular exchanges between the two levels
resonant with the radiation field and the other rotational lev-
els of the same vibrational band.

In analogy with the experiment, the coupling on each
oscillator has been realized by adding a function of the in-
tensity (x1) of the previous oscillator to the equation of its
feedback signalx6 .

The parameters are the same for all elements of the
chain. Here,k0 is the unperturbed cavity loss parameter,k1

determines the modulation strength,g1 ,g2 ,g are relaxation
rates,p0 is the pump parameter,z accounts for the number of
rotational levels,b,b0 ,r ,a are, respectively, the bandwidth,
the bias voltage, the amplification, and the saturation factors
of the feedback loop, ande is the coupling strength. The
values used in the numerical simulation to reproduce the
regime of homoclinic chaos,5 are: k0528.5714, k1

54.5556, g1510.0643, g251.0643, g50.05, p050.016,
z510, b50.4286,a532.8767,r 5160, b050.1032.

Besides the qualitative appearance of a chaotic tangle
within the attractor, in close agreement with the experimental
results of Fig. 1~b!, the standard evaluation of Lyapunov
spectrum provides evidence of one positive Lyapunov expo-
nent.

The coupling strengthe is the control variable and it can
assume both negative and positive values, as in the experi-
ment. An important feature found in the experiment is that
the route towards the pseudochaotic state depends on the
sign of the delayed feedback modulation. If positive, the sig-
nal tends to reach in-phase synchronization with the delayed
modulation, while if it is negative, the coupling comes out to
be phase-repulsive and the signal is in antiphase with the
feedback perturbation.

This route is not symmetric for the coupling strength: a
significantly stronger coupling is needed to reach the
pseudochaotic state for a positive than for a negative feed-
back signal. This behavior is a consequence of the fact that
the system is more efficiently removed from the saddle focus
neighborhood for a decrease of the modulating signal. Even-
tually, when the coupling is strong enough, the system be-
comes fully periodic for both positive and negative values,
i.e., there is no longer a pseudochaotic status.

The experimental data4 reveal a small time offset be-
tween the modulation and the signal, which is independent of
the long delayTd and of the coupling strength. This offset

FIG. 1. ~a! Experimental time intensity in the homoclinic regime. The
dashed line corresponds to the baseline.~b! Phase space projection of the
experimental time series.

119Chaos, Vol. 14, No. 1, 2004 Synchronization of homoclinic chains

Downloaded 13 Jan 2004 to 193.147.63.86. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



depends on the sign of the modulation feedback, and it has
been measured to betn5140ms for negative coupling and
tp520ms for a positive, against an average ISI of 500ms.

The numerical results are shown in Fig. 2, and explain
how these asymmetries depend on the coupling sign. In both
cases@positive ~a! and negative~b! coupling#, the slave in-
tensity lags with respect to the driving one, but by fixed
amounts, which however differ for different coupling signs.
Precisely, the driver’s negative slope forces the slave to es-
cape away from the saddle region toward the zero baseline.
In case~a!, the driver’s and slave’s collapses onto the zero
baseline occur just one after the other and the negative os-
cillations around the spike do not induce a transition insofar
as they occur while the slave is already on the baseline. The
offset tp depends on the coupling strength, that is, on how
effective is the forcing to let the slave escape from SN. On
the contrary, in case~b! the first negative driver’s slope
which can force the slave to fall away from the saddle coin-
cides with the first negative spike oscillation; the escape of
the slave from SF toward SN takes a lag time depending on
the coupling strength; adding this lag tot0 makes a total
offset tn.tp .

Therefore we can say that the timestp and tn corre-
spond to different information propagation velocities along
the array, with a lower velocity~longer offset! for the nega-
tive coupling.

In order to model the delayed system with an array ofN
coupled systems, we must match the overall delay along the
closed chainNt j ~wherej stands forp or n depending on the
coupling! with a delay timeTd so that each system is ex-
posed to a delayed version of its own signalx1(t2Td)
5x1(t2Nt j ). As tp,tn , a longer chain will be needed in
the positive case to obtain the same periodicity. The scale of

the different propagation velocities can be seen in Fig. 3,
where the relation between the repetition timeT and the
numberN of oscillators in the chain are reported for the two
conditions. From Fig. 3 we can also establish thattn

.7tp , which fits well with the experimental ratio 140/20. In
order to adjust to the experiment, we had to choose different
coupling strengths for the positive and the negative case,
respectively,e50.15 ande520.042.

An example of the dynamical characteristics can be ap-
preciated in Fig. 4. Here, the time intensity profile of a single
site of the chain is compared with its driver neighbor in the
pseudochaotic regime, for both positive@Fig. 4~a!# and nega-
tive @Fig. 4~b!# coupling. The chains have been chosen to
have approximately the average period^T&50.95 ms, and
^T&51.25 ms, respectively, withN57 in the negative case
andN570 in the positive case.

We can thus establish a full equivalence between the
experimental laser system of Ref. 4 and the closed chain here
reported. As a pictorial demonstration, in Fig. 5 a chain of
N58 coupled negatively elements is compared to an experi-
ment performed with negative feedback and a delay time of
4 ms, and another chain ofN524 elements with an experi-
ment in which a delay of 12 ms was used. For the experi-
mental case, we use the space–time representation of the
laser intensity15 @Figs. 5~a! and 5~b!#, and report by horizon-
tal black bars the occurrence of the largest spikes according
to the previously described filtering process; for the numeri-
cal case we report for each site the occurrence of the largest
spikes as a function of time@Figs. 5~c! and 5~d!#. The experi-
mental results correspond to a negative coupling of27%,
while the numerical results are obtained fore520.042,
these values being close to the threshold values to establish a
stable pattern in the dynamics.

FIG. 2. Detail of the time profile of
the i th ~solid line! and (i 21)th ele-
ments of the chain, for~a! positive
coupling and ~b! negative coupling.
The permanence timet0 on the base-
line is a fixed refractory time corre-
sponding to the heteroclinic connec-
tion to SN.
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In both theoretical and experimental cases we represent
the occurrence of a spike by a short horizontal segment. The
synchronization here is meant in its identical fashion,12 and it
has been checked by means of the vanishing of the synchro-
nization error function.

The same phenomenology in which a positive coupling
can induce a collective synchronous behavior, while a nega-
tive coupling induces an antiphase dynamics, has been ob-
served in experiments in arrays of neurons where the cou-
pling could be modified.10

In conclusion, we have discussed under what conditions
a time delayed system can be used for an experimental in-
vestigation of the synchronization behavior of an array of

chaotic oscillators. For a delayed laser in the homoclinic cha-
otic regime, phase and antiphase pseudochaotic synchroniza-
tion regimes have been reported. The presented equivalence
is crucial for experimental investigations, where a single sys-
tem, but not a whole array, may be easily accessible; vice
versa a computer simulation on a coupled array can be faster
than the simulation of the delayed dynamics.

FIG. 3. Different responses of the
chain for negative (Nn) and positive
(Np) coupling. The overall propaga-
tion velocitiesNj /T ( j 5n,p) are in
the ratio 1/7 as the two offset times in
Fig. 2.

FIG. 4. Intensity profiles of two neighbor oscillators~a! N570, e50.15,~b!
N57, e520.042. The data have been vertically shifted for a better display.

FIG. 5. Space–time representation of the experimental laser intensity in the
experiments of Ref. 4~a,b! compared with the numeric result of an oscillator
chain~c,d!. ~a! Td54 ms, coupling strength27%; ~b! Td512 ms, coupling
strength 27%. For the equivalent chain of oscillators:~c! N58,
e520.042; ~d! N524, e520.042.
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