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Wave Propagation in a Medium with Disordered Excitability
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The effect of quenched disorder on the propagation of autowaves in excitable media is studied both
experimentally and numerically in relation to the light-sensitive Belousov-Zhabotinsky reaction. The
spatial disorder is introduced through a random distribution with two different levels of transmittance.
In one dimension the (time-averaged) wave speed is smaller than the corresponding to a homogeneous
medium with the mean excitability. Contrarily, in two dimensions the velocity increases due to the
roughening of the front. Results are interpreted using kinematic and scaling arguments. In particular,
for d � 2 we verify a theoretical prediction of a power-law dependence for the relative change of the
propagation speed on the disorder amplitude. [S0031-9007(98)06327-3]

PACS numbers: 82.40.Bj, 03.40.Kf, 47.54.+r

Wave propagation in homogeneous excitable media has
been studied extensively in the past years [1]. Representa-
tive examples are spiral and target waves in the Belousov-
Zhabotinsky (BZ) reaction [2], reentry formation in
excitable cardiac tissues, or spiral-like organization of the
slime moldDictiostelium discoideum [3].

Propagation of excitable waves in inhomogeneous me-
dia has also been studied from different points of view,
such as the interaction of waves and inert obstacles (which
is of some interest in cardiology, since reentries can be an-
chored [4–6] or planar fronts broken [7–10]) and the effect
of modulations [11,12] or fluctuations [13–15]. Besides,
the influence of additive and multiplicative fluctuations on
symmetric bistable wave motion has been analyzed in de-
tail [16–19].

On the other hand, front roughness induced by fluctua-
tions has received recently increasing attention [20,21].
Particularly analyzed have been the quenched versions
[22,23] of either the Edwards-Wilkinson [24] or the
Kardar-Parisi-Zhang (KPZ) equations [25] as they ap-
ply to kinetic roughening induced by time-independent
disorder.

In this Letter we aim at studying, both experimentally
and numerically, the effects on the propagation of au-
towaves originated by introducing time-independent ran-
dom spatial fluctuations in the medium excitability.

Experimentally a photosensitive highly excitable BZ
medium was chosen. As shown in Fig. 1, we have con-
sidered two distinct configurations, where two parts of the
medium, the leftmost homogeneous and the rightmost in-
homogeneous, were separated by a vertical, completely
unexcitable, strip with higher illumination. In the quasi-
one-dimensional configuration, horizontal stripes of ran-
dom dichotomic illumination, with the same average light

intensity as in the homogeneous part, introduced the dis-
order. The two-dimensional setup was prepared analo-
gously, this time with randomly distributed squares of
two possible light intensities. The typical experiments
(see Fig. 1) consisted in generating a planar wave at
the bottom of the medium and observing its upwards
evolution along the vertical axis. In this way both the
shapes and velocities of the two free-end noninteracting

FIG. 1. Propagating wave fronts on light-sensitive media
consisting of both a left-side homogeneous and a right-side
inhomogeneous medium with a brighter strip between them
where fronts cannot propagate. (a) Quasi-one-dimensional
setup. An initial flat front splits into two that were represented
at three different times. The front which propagates through
the inhomogeneous part undergoes an appreciable delay with
respect to the other one. Stripe width in the direction of
propagation l � 1.1 cm. (b) Two-dimensional setup with
randomly distributed squares. An initial flat front gets rough
in the randomly illuminated zone and goes faster than in the
homogeneous part; square sizel � 2.3 mm and size of the
medium in the transversal direction to the propagation 5.4 cm.
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fronts at either side of the central strip were compared.
Experiments were performed with the BZ reagent cata-
lyzed by the ruthenium bipyridyl complex Ru(bpy) which
is sensitive to visible light [26–29]. The Ru complex was
immobilized in a silica-gel matrix [using a solution of
15% sodium silicate, 0.71 mM Ru�bpy�21

3 and 0.18 M
H2SO4; preparation as in [30] ] in a Petri dish (diameter,
9.6 cm; thickness, 1 mm). The solution (initial concentra-
tions: 0.18 M KBr, 0.33 M malonic acid, 0.39 M NaBrO3

and 0.69 M H2SO4) was pored onto the gel. The tempera-
ture was kept constant at25 6 1 ±C. White light (190 W
halogen lamp) passed first a diffusion screen, then the
Petri dish, the interference filter (450.6 nm; transmission
56%), and finally video equipment for image recording
[31,32]. In order to prepare the nonuniform excitability
on the gel, a transparency was printed with a pattern of
transmittances, in such a way that when it is placed be-
tween the light source and the Petri dish the light distri-
bution described above is projected onto the gel. In the
inhomogeneous part, the transparency had a transmittance
T given by

T �x, y� � T0 1 dTh�x, y� , (1)

wherex is the transversal direction to front propagation,
T0 is the mean transmittance, andh�x, y� � 61 is a two-
valued random number of zero spatial average. Within
the illumination range here considered, speeds of planar
autowaves decrease linearly with light intensity [11].

Typical experimental observations are shown in Fig. 1.
In the quasi-1D arrangement [Fig. 1(a)], planar fronts in
the inhomogeneous part are observed to go slower on av-
erage than those propagating under uniform illumination
corresponding to the spatial average of the inhomoge-
neous region. Contrarily, in 2D [Fig. 1(b)], dynamically
evolving, distorted although still well-defined autowaves
propagate faster.

Numerically, we conducted simulations with a two-
variable Oregonator model adapted to our photosensitive
medium [33],
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where u (g) describes HBrO2 (catalyst) concentrations.
Du and Dg are diffusion coefficients withDg � 0 (to
reproduce that the catalyst is immobilized).f, q, and´

are parameters related to the kinetics of the BZ reaction.
f�x, y� represents the light-induced flow of Br2 and it
is assumed directly proportional toT �x, y�. Since edge
effects at the boundaries of the nonexcitable central strip
are negligible, simulations have been performed with
lateral periodic boundary conditions for simplicity.

Before proceeding further let us clearly state the con-
ditions with which our experimental and numerical study

complies. This will enable us to interpret the observed
results in terms of generic kinematic arguments widening
in this way the scope of our study beyond the particular
randomness realization here analyzed. Listing them sepa-
rately: (i) We restrict ourselves to thin fronts measured
on the length scale introduced by the disorder. (ii) We
verify, both experimentally and numerically, that the au-
towave speed adapts quasiadiabatically to the local illumi-
nating conditions. (iii) Finally, in the 2D case, we assume
that the disorder amplitude, i.e., a measure of the disper-
sion of local velocities in our two-state model is small.

In particular, for the 2D case, the above conditions
lead us to conclude that diffusion lengths in this problem
will always be considerably smaller than the length scale
associated with the front deformation. In turn this justifies
the use, both as a central theoretical issue as well as an
advantageous computational resource, of the linear speed-
curvature relation, also well-known as the first-order
eikonal equation [34], which gives the normal velocity
of the autowave in terms of its local plane-wave value
corrected by a curvature term. On the other hand, by
invoking condition (ii), this local velocity is assumed to
be at any time fixed by the space-dependent illumination.
We translate such a relation into Cartesian coordinates for
the position of the front, denotedy � h�x, t�, to have

ht � y�x, h�
q

1 1 �hx�2 1 D
hxx

1 1 �hx�2
, (3)

where D is an effective diffusion coefficient and, in
general, a function of diffusion coefficients of the species
involved in the front propagation. This coefficient is
assumed to be independent of the light intensity [11,35].
Besides conditions (i) and (iii) and the assumption of
isolated fronts, allow us to consider Eq. (3) valid within
the Zykov’s limit (see Ref. [34]).D has been estimated
from the integration of the full Oregonator model with
circular fronts. To validate our assumptions, the results
of both versions, the complete reaction-diffusion scheme
(2) and the local one (3), were checked to give the same
results with great accuracy, for both front shapes and
velocities.

Let us formulate our theoretical scenario. In a 1D
situation, and invoking conditions (i) and (ii) above, the
propagating interface can be viewed as a pointlike object
which follows instantaneously a spatial profile of velocity
y� y�. It can be proved that for an arbitrary (non-negative)
velocity profiley� y� the following inequality holds

ȳ � L

"Z L

0
y� y�21dy

∏21

# L21
Z L

0
y� y�dy (4)

with the equality holding for the homogeneous case.
We thus conclude that the time-averaged velocity is
always smaller than its spatial average. Ify� y� is a
random variable, the previous statement is valid for each
realization of it. However, it may be convenient to relate
ȳ to the statistical properties ofy� y�. If L is large enough
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compared to the spatial correlations of the disorder and
under self-averaging conditions, the integral overL in the
left part of Eq. (4) is equivalent to an ensemble average in
each point, that is,

1
ȳ

�

ø
1

y� y�

¿
. (5)

If we write y� y� � y0 1 dy� y� with dy� y� having
a vanishing spatial average, and being bounded by
jdy� y�j , y0, such an expression can be expanded as
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which relates the time-averaged velocity to the statistical
moments of the disorder. For the two-state model,dy �
6Dy, the previous expression can be computed exactly
giving a reduced velocity

ȳ 2 y0

y0
� 2

µ
Dy

y0

∂2

. (7)

In 2D the situation is a bit more involved. We start
directly from our central equation (3) and develop it,
consistently with approximations (i)–(iii) above, using
a small-gradient approximation. Notingy�x, h� � y0 1

dy�x, h� and retaining as usual the lowest-order nonlin-
earity onhx we have

ht � y0 1
y0

2
�hx�2 1 Dhxx 1 dy�x, h� , (8)

where an extra multiplicative term�hx�2dy�x, h� has been
neglected for weak enough disorder amplitudes. No-
tice that, written in this way and after some trivial
reparametrization to get rid of the trivialy0 term, this
equation strongly resembles the well-known KPZ model

for the propagation of random interfaces [25]. A quite
similar KPZ-like equation was also considered by Ker-
stein and Ashurst [36] when dealing with interfaces propa-
gating in randomly advected media. The only difference
is that the diffusive termhxx , responsible for the trans-
verse redistribution of fluctuations along the interface, is
there replaced by a similar term onhx times the transverse
component of the advecting flow. Furthermore, they self-
consistently showed that for weak randomness (weak stir-
ring in their language) such transverse redistribution effect
is irrelevant for their scaling analysis. What makes such
an analysis particularly appropriate to our situation is that
they focused explicitly on the limit of frozen flows, which
is completely equivalent to the scenario of quenched dis-
order here addressed. Under these conditions their main
result reads [36]

S � 1 1 bQ4�3, (9)

whereS � y�y0 and Q represent a relative measure of
the randomness in the medium. In our notationQ �
jDyj�y0, so Eq. (9) transforms into

ȳ 2 y0

y0
� b

∑µ
Dy

y0

∂2∏2�3

. (10)

The theoretical predictions, represented, respectively,
by Eqs. (7) and (10), are compared with numerical and
experimental results in Fig. 2. Certainly, the quantitative
agreement is extremely rewarding with respect to the
numerical simulations. In particular, the observed power
laws and corresponding exponent are certainly consistent
with the theoretical prediction, whereas the prefactor
b in Eq. (10) is clearly seen to depend on the length
scale of the spatial inhomogeneities. Experimental results
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FIG. 2. Dependence of the relative variation in wave velocity vs amplitude disorder both numerically�f0 � 0.01� and
experimentally�T0 � 3.55 W�m2�. (a) One-dimensional system. Continuous line (slope21) represents the theoretical prediction
of Eq. (7). Numerical points () were simulated with stripes of width 10 s.u. (space units) and the best linear fit corresponds to a
slope of20.93; experimental data�1� were obtained with squares of length of 1.1 cm and adjusted to a line of slope21.42. (b)
Two-dimensional system. Numerically: for a medium width of 160 s.u. and noise squares of side length 10 (•), 20�1�, and 40
( ). Continuous lines represent nonlinear fits of Eq. (10), withb � 0.831, 1.04, and 1.35, respectively. The typical front width
is about 2.5 s.u. Experimental results shown for a medium width of 5.4 cm andl � 2.3 mm (3), and for 6 cm andl � 2.7 mm
( ), with b � 1.59 and 2.89, respectively. Model parameters:f � 3, q � 0.002, ´ � 0.05, Du � 1, Dg � 0, andf0 � 0.01.
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also support the previous theoretical considerations given
the unavoidable experimental limitations mainly due to
light dispersion and intrinsic inaccuracies in velocity
measurements. This effect is shown in Fig. 2(a) where
experimental data deviate from the theoretical prediction
(continuous line) as the amplitude of disorder increases.
Here, the inhibitor which is continuously produced in the
brighter squares tends to invade the darker ones, then
increases theeffective value of the transmittance there.
This effect becomes more important as the amplitude of
the disorder increases. Therefore, the corresponding mean
value of the transmittanceT0 in Eq. (1) varies slightly
with the disorder amplitude. In any case, the distinctive
behaviors depending on the dimension considered are
clearly exhibited in the experiments.
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